- общее решение однородного уравнения
- Mathematics: complementary function, general solution (of the homogeneous equation)
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
Частное решение дифференциального уравнения — Частным решением дифференциального уравнения на интервале называется каждая функция , которая при подстановке в уравнение вида обращает его в верное тождество на интервале . Зная общее решение однородного дифференциального уравнения и любое… … Википедия
Линейные дифференциальные уравнения — дифференциальные уравнения вида y(n) + p1(x) у(n 1) + ... + pn(x)y = f(x), (1) где у = y(x) искомая функция, y(n), у(n 1),..., y её производные, a p1(x), p2(x),..., pn(x) (коэффициенты) и f(x) (свободный член) заданные… … Большая советская энциклопедия
Метод Лагранжа (дифференциальные уравнения) — У этого термина существуют и другие значения, см. Метод Лагранжа. Метод Лагранжа (метод вариации произвольных постоянных) метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения без нахождения… … Википедия
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ — Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими то величинами. Часто речь идет о соотношении между величинами, изменяющимися с… … Энциклопедия Кольера
ПЛОСКАЯ ЗАДАЧА — теории упругости название типа задач, в к рых картина изучаемого явления в упругой среде одинакова во всех плоскостях, параллельных нек рой плоскости (напр., плоскости Ох 1x2 декартовой системы координат Ох 1 х 2 х 3, Математич. теорией П. з.… … Математическая энциклопедия
Вынужденные колебания — Вынужденные колебания колебания, происходящие под воздействием внешних сил, меняющихся во времени. Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого … Википедия
Уравнение Коши — Эйлера — В математике ( дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с… … Википедия
Уравнение Коши - Эйлера — В математике ( дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с… … Википедия
Уравнение Коши — В математике (дифференциальных уравнениях), уравнение Коши Эйлера (Эйлера Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному… … Википедия
Формула Лиувилля-Остроградского — Формула Лиувилля Остроградского формула, связывающая определитель Вронского (вронскиан) для решений дифференциального уравнения и коэффициенты в этом уравнении. Пусть есть дифференциальное уравнение вида y(n) + P1(x)y(n − 1) + P2(x)y(n − 2) … Википедия
Формула Лиувилля — Остроградского формула, связывающая определитель Вронского (вронскиан) для решений дифференциального уравнения и коэффициенты в этом уравнении. Пусть есть дифференциальное уравнение вида тогда где определитель Вронского Для линейной… … Википедия